Wednesday, September 26, 2018

Power Quality in Power Systems and Electrical Machines By Ewald Fuchs and Mohammad A S Masoum

Power Quality in Power Systems and Electrical Machines By Ewald Fuchs and Mohammad A S Masoum

The increased use of power electronic components within the distribution system and the reliance on renewable energy sources which have converters as interface between the source and the power system lead to power quality problems for the operation of machines, transformers, capacitors and power systems. The subject of power quality is very broad by nature. It covers all aspects of power system engineering from transmission and distribution level analyses to end-user problems. Therefore, electric power quality has become the concern of utilities, end users, architects and civil engineers as well as manufacturers. The book is intended for undergraduate or graduate students in electrical and other engineering disciplines as well as for professionals in related fields. It is assumed that the reader has already completed electrical circuit analysis courses covering basic concepts such as Ohm's, Kirchhoff's, Ampere's and Faraday's laws as well as Norton and Thevenin equivalent circuits and Fourier analysis. In addition, knowledge of diodes and transistors and an introductory course on energy conversion (covering energy sources, transformers, simple control circuits, rudimentary power electronics, transformers, single and three-phase systems as well as various rotating machine concepts such as brushless DC machines, induction and synchronous machines) is desirable. This book has evolved from the content of courses given by the authors at the University of Colorado at Boulder, the Iran University of Science and Technology at Tehran and the Curtin University of Technology at Perth, Australia. The book is suitable for both electrical and non-electrical engineering students and has been particularly written for students or practicing engineers who want to teach them selves through the inclusion of about 150 application examples with solutions. More than 700 references are given in this book: mostly journal and conference
papers as well as national and international standards and guidelines. The International System (SI) of units has been used throughout with some reference to the American/English system of units.
Preface: Power quality of power systems affects all connected electrical and electronic equipment, and is a measure of deviations in voltage, current, frequency, temperature, force, and torque of particular supply systems and their components. In recent years there has been considerable increase in nonlinear loads, in particular distributed loads such as computers, TV monitors and lighting. These draw harmonic cur rents which have detrimental effects including communication interference, loss of reliability, increased operating costs, equipment overheating, machine, transformer and capacitor failures, and inaccurate power metering. This subject is pertinent to engineers involved with power systems, electrical machines, electronic equipment, computers and manufacturing equipment. This book helps readers to understand the causes and effects of power quality problems such as nonsinusoidal wave shapes, voltage outages, harmonic losses, origins of single-time events such as voltage dips, voltage reductions, and outages, along with techniques to mitigate these
problems. Analytical as well as measuring techniques are applied to power quality problems as they occur in existing systems based on central power stations and distributed generation mainly relying on renew able energy sources. It is important for each power engineering student and professional who is active in the area of distribution systems and renewable energy that he/she knows solutions to power quality problems of electrical machines and power systems: this requires detailed knowledge of modeling, simulation and measuring techniques for transformers, machines, capacitors and power systems, in particular fundamental and harmonic power flow, relaying, reliability and redundancy, load shedding and emergency operation,islanding of power system and its voltage and frequency control, passive and active filtering methods, and energy storage combined with renewable energy sources. An intimate knowledge of guidelines and standards as well as industry regulations and practices is indispensable for solving power quality


No comments:

Post a Comment


Disclaimer for MEP Engineering Café (“MEP Engineering Café”) respects the intellectual property rights of others and expects its users to do the same. In accordance with the Digital Millennium Copyright Act of 1998, the text of which may be found on the U.S. Copyright Office website at, MEP Engineering Café will respond expeditiously to claims of copyright infringement committed using the MEP Engineering Café service and/or the MEP Engineering Café website. Protection Status

Social Media

Featured Post